
Hypercomputing With the 
CORDIC Algorithm

Kristen Barr
Shaun Foley

Robert A. Lewis II



Presentation Overview

Background of HAL project and CORDIC  
algorithm
How the CORDIC algorithm works
Demonstration of Viva
Summary and conclusions
Special Recognitions
Questions and Answers



1990  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000

• Catastrophe!
• Computer Failure!
• Cataclysms!

As the world surged towards the millennium 10 years ago



So what does this mean?

Soaring without limits…
Have we reached our limits
When will we go
for the ride again



“Re-configurable Computing”,
A phrase coined by Kent Gilson, refers to “the frequent remanufacture 
or morphing of the entire physical hardware, according to the demands 
of the user’s specific behavioral requirements”.

With re-configurable 
computing, you don’t 
waste a lot of time moving 
in and out of memory, 
because all operations are 
performed on hardware, 
which makes things move 
very quickly.  Kent Gilson 
refers to this as hyper-
computing.



The Potential For Efficient 
Computing is Greater

Because of the FPGA chip, or Field Programmable Gate Array chip.  

An FPGA is a class of integrated circuits for which the logic function is 
defined by the customer after the IC has been manufactured and 
delivered to the end user.

FPGA’s allow users to implement their algorithms at the chip level, as 
opposed to writing programs that are translated into machine level 
instructions.  

This technique of programming uses dataflow algorithms at the chip 
level, which proves advantageous because it maximizes parallelism.  
(i.e. If an algorithm calls for 8 independent additions, then 8 adders 
can be implemented and all calculations run at once.)



The Potential For Efficient 
Computing is Greater

Obtaining parallelism in processing would be a gigantic leap in 
programming, because it more closely depicts how things happen in 
the real world. 



The Potential For Efficient 
Computing is Greater

(Decrease production time + Increase in 
flexibility + Multi-processing) = 

Cheaper, Faster, More Efficient Computing

FPGA’s are also produced much faster than the standard ASIC 
chip, (Application Specific Integrated Circuit), which makes 
them a good choice for the future of hyper-computing.  (i.e. it 
can take a standard ASIC chip up to as long as 18 months to 
be produced.)



The 3-Points of HAL:
Hyper Algorithmic Logic Computer

• The HAL 15 system here at NASA was the first system to be 
delivered by Star Bridge to an established high performance 
computer user.  The HAL 15 uses a combination of an Intel based 
workstation, and a PCI board containing 10 Xilinx FPGA chips.

• IIADL (Implementation Independent Algorithm Description 
Language) a new programming language that makes it possible 
for an FPGA-based re-configurable computer to operate as a 
general-purpose computer system.

• Viva (Latin word for “life”), brings life to HAL and hyper-
computing as an OS, compiler, and graphical user interface all in 
one. 



Viva
Viva, the OS of HAL, is a graphical programming interface that uses an 
object oriented programming model with data flow characteristics.

Reusable objects can be built up from primitive functions or multiple 
levels of hierarchy.  Programs are written and compiled in Viva as well.



Viva



Viva



So Where Did We Come In?
Test Functions
Build Libraries
Innovate and Create!



Our Goals

Compute transcendental 
functions
i.e. sin, cos, exp, sinh, cosh, 
ln, square-root, etc.  

Create libraries

We initially tested out the primitive objects in Viva, and corrected 
some inconsistencies with the functions. 

Once realizing that Viva had no transcendental functions we decided 
to implement them.



CORDIC Algorithm

COordinate Rotational DIgital Computer
Jack E. Volder (1959)
Primary concern was trig functions
Extended by J. Walther in 1971
Used by most calculators today
Efficient shift add algorithm/ no mulitplies needed



How CORDIC Works

General concept:  iterative vector 
rotations

Rotation of a vector V by the angle 

x ’ = x cos Φ – y sin Φ

y ’ = y cos Φ+ x sin Φ



How CORDIC Works (cont’d)

At each step, accumulate corresponding 
x and y increments

After a number of iterations, x and y 
increments converge to desired function 
values



How CORDIC Works (cont’d)

Iterative vector rotation, initialized with V0

tangent of rotation 
angles = 2 -n

break up angle into
smaller angles



Basic CORDIC-equations
x ’= x cos Φ – y sin Φ
y ’= y cos Φ + x sin Φ

xn+1 = xn – dn yn 2 -n

yn+1 = yn  + dn xn 2 -n

zn+1 = zn – dn atan(2 -n)

xn+1  cosine

yn+1 sine

zn+1 :  angle                  
accumulator



Basic CORDIC-equations (cont’d)

xn+1 = xn – dn yn 2 -n

yn+1 = yn  + dn xn 2 -n

zn+1 = zn – dn atan(2 -n)

dn :  direction of     
rotation

dn =    -1, if zn  < 0
+1, if zn  >= 0

K = K0 K1 K2 … Kn

where Kn = cos (atan(2 -n))
K 0.6073



CORDIC Example
Computation of cos(30°) and sin(30°) in 
8 iterations:

n X (cos) Y (sin) Z (angle) atan(2^ -n)
0 0.607 0 30 45
1 0.607 0.607 -15 26.565
2 0.91 0.303 11.565 14.036
3 0.835 0.531 -2.471 7.125
4 0.901 0.427 4.654 3.576
5 0.874 0.483 1.077 1.79
6 0.859 0.51 -0.712 0.895
7 0.867 0.497 0.183 0.448
8 0.863 0.504 -0.265 0.224



Viva Demonstration

Viva overview

Implementation of sine and cosine 
functions in Viva.



Summary and Conclusions
HAL computer at NASA
CORDIC algorithm (efficient shift-add 

algorithm)
Viva (graphical programming language)
Implementations of transcendental functions 

to be in Langley Library for future use



Thank You!!!

Dr. Olaf Storaasli

Dr. Ivatury Raju

ACMB Branch



Any Questions???


